Chapter 1 Lecture Outline

Foundations of Earth Science
Seventh Edition

Matter and Minerals

Natalie Bursztyn
Utah State University
Focus Question 1.1

• What are the defining characteristics of a mineral?
Minerals: Building Blocks of Rocks

- **Minerals** are the building blocks of rocks
- **Minerals important in human history**
 - Flint and chert for weapons and tools
 - Gold, silver, and copper mined by Egyptians
 - Bronze developed by 2200 b.c.
 - Mining became common by the Middle Ages
- **Study of minerals is** **mineralogy**
Defining a Mineral

• Geologists’ definition:
 – Naturally occurring
 – Inorganic solid
 – Orderly crystalline structure
 – Definite chemical composition
Defining a Mineral

• Minerals are naturally occurring:
 – Form by natural geologic processes
 – Synthetic materials are not considered minerals
Defining a Mineral

- Minerals are generally inorganic
- Crystalline solids from organic sources are generally not considered minerals
- Some organisms secrete inorganic compounds like calcium carbonate
 - Considered a mineral when they become part of the rock record
Defining a Mineral

• Minerals are solid substances:
 – Exception: mercury occurs naturally as a liquid
Defining a Mineral

• Minerals have an orderly crystalline structure:
 – Atoms are arranged in an organized, repetitive manner
 – Organization is reflected in the crystal shape
Defining a Mineral

• Minerals have a chemical composition that allows for some variation:
 – Most minerals are compounds
 – Can be expressed as a chemical formula
 • Example: quartz = SiO$_2$
 – Composition may vary slightly if certain elements substitute for others
 • Substituting elements about the same size will not change the crystalline structure of the mineral
Defining a Mineral

• Are the following materials considered a mineral or not? Why or why not?
 – Ice
 – Cubic zirconia
 – Chocolate
 – Gold nugget
 – Glass
 – Salt
What is a rock?

• A rock is a naturally occurring solid aggregate mass of mineral, or mineral-like matter
• Most are aggregates of several different minerals
 – Individual properties of the minerals are retained
 – Some rocks are composed of a single mineral
 • Example: limestone is an impure mass of the mineral calcite
 – Some rocks are made of non-mineral matter
 • Examples: obsidian and pumice (volcanic glass), coal (organic)
What is a rock?

Granite
(Rock)

Quartz
(Mineral)

Hornblende
(Mineral)

Feldspar
(Mineral)
What is a rock?

• What is the relationship between atoms, minerals, and rocks?
Focus Question 1.1

• What are the defining characteristics of a mineral?

 – Naturally occurring
 – Inorganic
 – Solid
 – Crystalline structure
 – Definite chemical composition
Focus Question 1.2

- What are the particles that make up an atom?
Atoms: Building Blocks of Minerals

• All matter — including minerals — is composed of atoms
• All atoms (excluding H and He) formed inside massive stars by nuclear fusion
• An atom is the smallest particle that cannot be chemically split
• Atoms contain even smaller particles:
 – Protons
 – Neutrons
 – Electrons
• Protons, Neutrons, and Electrons:
 – **Protons** and **neutrons** have almost identical masses
 – **Electrons** are much smaller (1/2000) than protons and neutrons
 – Protons have a charge of +1
 – Neutrons have no charge
 – Electrons have a charge of -1
 – Most matter is neutral, because the charges of protons and electrons cancel each other out
Atoms: Building Blocks of Minerals

- Electrons are sometimes shown orbiting the **nucleus** like planets in a solar system.
- Electrons actually surround the nucleus like a cloud.
• Electrons:
 – Move around the nucleus in a cloud with different regions called principle shells
 – Each principle shell has an energy level and a specific number of electrons
 – The outer shell contains **valence electrons**
 • Interact with valence electrons of other atoms to form chemical bonds
Elements: Defined by Their Number of Protons

• The number of protons in the nucleus of an atom gives its **atomic number**
 – Determines chemical nature of atom
 – All atoms with the same atomic number are known as an **element**

• Approximately 90 naturally occurring elements
 – Elements are arranged in the **periodic table**
 • Elements with similar properties line up in columns
Elements: Defined by Their Number of Protons

- Vertical columns contain elements with similar properties.
- Tendency to lose outermost electrons to uncover full outer shell.
- Tendency to fill outer shell by sharing electrons.
- Tendency to gain electrons to make full outer shell.
- Noble gases are inert because outer shell is full.

© 2014 Pearson Education, Inc.
Elements: Defined by Their Number of Protons

- Most minerals are **chemical compounds**
 - Two or more elements joined together
- A few minerals are made up of single elements
 - Native minerals

A. Gold on quartz
B. Sulfur
C. Copper
Focus Question 1.2

• What are atomic particles?
 – Protons
 • Found in the nucleus
 • Have a positive charge
 – Electrons
 • Surround the nucleus like a cloud
 • Have a negative charge
 • Valence electrons interact to form bonds
 – Neutrons
 • Found in the nucleus
 • Have no charge
Focus Question 1.3

• Why and how do atoms bond?

A. The transfer of an electron from a sodium (Na) to a chlorine (Cl) atom leads to the formation of a Na\(^+\) ion and a Cl\(^-\) ion.

B. The arrangement of the Na\(^+\) and Cl\(^-\) in the solid ionic compound sodium chloride (NaCl), table salt.
Why Atoms Bond

• Elements (excluding noble gasses) form bonds under the temperature and pressure conditions that occur on Earth

• Bonds lower the total energy of the atoms and make them more stable
The Octet Rule and Chemical Bonds

• **Eight** valence electrons is a stable arrangement and a full valence shell
 – The noble gasses all have full valence shells so they lack chemical reactivity

• Elements gain, lose, or share electrons during chemical reactions
 – Producing stable electron arrangements
• **The Octet Rule**
 – Atoms tend to gain, lose, or share electrons until they have eight valence electrons
The Octet Rule and Chemical Bonds

• A chemical bond is the transfer or sharing of electrons that results in a full valence shell
 – Ionic bonds: electrons are transferred
 – Covalent bonds: electrons are shared
 – Metallic bonds: electrons move around
Ionic Bonds: Electrons Transferred

• When one atom loses or gains valence electron(s), ions are formed
 – Electrons are lost: becomes a positive ion
 – Electrons are gained: becomes a negative ion

• Ionic bonds form when ions with opposite charges are attracted
 – Creates ionic compounds
Ionic Bonds: Electrons Transferred

- NaCl is an ionic compound
 - Na loses a valence electron (becomes positive)
 - Cl gains a valence electron (becomes negative)
Ionic Bonds: Electrons Transferred

- Ionic compounds have very different properties than the bonded elements that make them up

- Example: Sodium Chloride
 - Sodium
 - Soft, silver, toxic metal that reacts explosively when exposed to water
 - Chlorine
 - Poisonous green gas used as a chemical weapon during World War I
 - Sodium Chloride is table salt!
A covalent bond forms when electrons are shared between atoms.

Two hydrogen atoms combine to form a hydrogen molecule, held together by the attraction of oppositely charged particles—positively charged protons in each nuclei and negatively charged electrons that surround these nuclei.

\[H \cdot + H \cdot \rightarrow H : H \]
Metallic Bonds: Electrons Free to Move

• **Metallic bonds** form when valence electrons are free to move from one atom to another
 – All atoms share available valence electrons
 – Movement of valence electrons between atoms results in:
 • High electrical conductivity
 • Malleability
 • Other unique properties of metals
Focus Question 1.3

• Why and how do atoms bond?
 – The most stable configuration is eight valence electrons
 – Ionic bonds form when electrons are transferred from one atom to another
 • Produces negatively and positively charged ions, which are attracted to each other
 – Covalent bonds form when valence electrons are shared between two atoms
 – Metallic bonds form when valence electrons flow freely between atoms
Focus Question 1.4

• What physical properties can be used to identify a mineral?

Although the color of a mineral is not always helpful in identification, the streak, which is the color of the powdered mineral, can be very useful.
Physical Properties of Minerals

• Minerals have a **definite crystalline structure** and **chemical composition**
 – Gives them unique physical and chemical properties
• These properties can be used in identification
Physical Properties of Minerals

- **Luster** is the quality of light reflected from the surface of a mineral
 - Minerals that look like shiny metal have a metallic luster
 - A submetallic luster appears slightly dull
 - Nonmetallic luster includes:
 - Vitreous or glassy, dull, earthy, pearly, silky, and greasy
Physical Properties of Minerals

• Ability to transmit light
 – Minerals that do not transmit light are **opaque**
 – Minerals that transmit some light, but not an image, are **translucent**
 – Minerals that transmit both light and images are **transparent**
Physical Properties of Minerals

• **Color** may be one of the most obvious properties of a mineral, but it is *only a diagnostic property for a few minerals*.

• Slight variations in the chemical composition of a mineral can change the color dramatically.
Physical Properties of Minerals

• **Streak** is the color of a mineral in powdered form
 – Obtained by rubbing the sample on an unglazed porcelain tile known as a streak plate
 – Streak, unlike color, is generally consistent

• Metallic minerals generally have a dense, dark streak

• Nonmetallic minerals generally have a light streak

• Not all minerals produce a streak
Crystal Shape or Habit

• **Crystal shape** or **habit** is the characteristic shape of individual mineral crystals
• Most minerals grow in one common shape, but some have two or more characteristic shapes
Crystal Shape or Habit

A. Fibrous

B. Bladed

C. Banded

D. Cubic crystals
Mineral Strength

- The strength of a mineral is determined by the strength of its chemical bonds.
- Mineral strength determines how minerals break or deform under stress.
Mineral Strength

- **Tenacity** is a mineral’s resistance to breaking or deforming
 - Minerals with ionic bonds tend to be brittle
 - They will shatter
 - Minerals with metallic bonds are malleable
 - They can be deformed into shapes and thin sheets
 - Sectile minerals can be cut into thin shavings
 - Elastic minerals will return to their original shape after being bent
Mineral Strength

• **Hardness** is a mineral’s resistance to abrasion or scratching

• Hardness is measured on a scale of 1 to 10 (Moh's Scale)
 – Can be determined by rubbing the mineral against a material of known hardness
 • Fingernail (hardness = 2.5)
 • Copper penny (hardness = 3.5)
 • Glass (hardness = 5.5)
A. Mohs scale (Relative hardness)

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Hardness</th>
<th>Common Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diamond</td>
<td>10</td>
<td>Streak plate (6.5)</td>
</tr>
<tr>
<td>Corundum</td>
<td>9</td>
<td>Glass & knife blade (5.5)</td>
</tr>
<tr>
<td>Topaz</td>
<td>8</td>
<td>Wire nail (4.5)</td>
</tr>
<tr>
<td>Quartz</td>
<td>7</td>
<td>Copper penny (3.5)</td>
</tr>
<tr>
<td>Orthoclase</td>
<td>6</td>
<td>Fingernail (2.5)</td>
</tr>
<tr>
<td>Apatite</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Fluorite</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Calcite</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Gypsum</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Talc</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
B. Comparison of Mohs scale and an absolute scale

MOHS SCALE

Talc Gypsum Calcite Fluorite Apatite Orthoclase Quartz Topaz Corundum

Diamond

Absolute Hardness Values

© 2014 Pearson Education, Inc.
Mineral Strength

• **Cleavage** is the tendency of a mineral to break along planes of weak bonding
 – This produces smooth, flat surfaces where the mineral is broken
 – Not all minerals have cleavage
 – Cleavage can be easily confused with crystal shape
 • Remember that cleavage is visible when a mineral is broken
Mineral Strength
Mineral Strength

A. Cleavage in one direction. Example: Muscovite

B. Cleavage in two directions at 90° angles. Example: Feldspar

C. Cleavage in two directions not at 90° angles. Example: Hornblende

D. Cleavage in three directions at 90° angles. Example: Halite

E. Cleavage in three directions not at 90° angles. Example: Calcite

F. Cleavage in four directions. Example: Fluorite
Mineral Strength

• **Fracture** is a property resulting from chemical bonds that are approximately equal in strength
 – *Irregular fracture*: uneven broken surface
 – *Conchoidal fracture*: smooth, curved broken surface

• Some minerals exhibit *splintery or fibrous* broken surfaces
Mineral Strength

A. Irregular fracture

B. Conchoidal fracture
Density and Specific Gravity

• **Specific gravity** describes the **density** of a mineral
 – Ratio of a mineral’s weight to an equal volume of water

• Most minerals have a specific gravity between 2 and 3
 – Many of the metallic minerals have a much higher specific gravity (20 for gold)

• Can be estimated by hefting a mineral in your hand
Other Properties of Minerals

• Some minerals have distinctive properties:
 – *Taste* (halite is salty)
 – *Feel* (talc is soapy; graphite is greasy)
 – *Smell* (sulfur smells like rotten eggs)
 – *Magnetism* (some can be picked up by a magnet and some can pick up iron objects)
 – *Optical properties* (calcite refracts light)
 – *Effervescence* (carbonate minerals fizz when exposed to dilute acid)
Focus Question 1.5

• What are the different mineral groups?
Mineral Groups

- There are over 4000 named minerals, but only a few dozen are abundant in Earth’s crust
 - Known as **rock-forming minerals**

- **Economic minerals** are less common than rock-forming minerals, but are used extensively in the manufacture of products
Mineral Groups

- The majority of rock-forming minerals are made up of only eight elements.
Mineral Groups

- Silica and oxygen combine to form the basic building block for the **silicates**
 - The most common minerals
 - More than 800 silicate minerals
 - Make up 90% of the Earth’s crust
Mineral Groups

• The remaining mineral groups are often referred to as the **nonsilicates**
 – Far less abundant in Earth’s crust
 – Some are very important economic minerals
Silicate Minerals

- The **silicon-oxygen tetrahedron** is the building block of all silicates
 - Four oxygen atoms surround a much smaller silicon atom
 - Tetrahedra can be joined into chains, sheets, or three-dimensional networks by sharing oxygen atoms
Silicate Minerals

• Feldspars are the most plentiful silicates
 – Over 50% of Earth’s crust
• Quartz is second-most-abundant mineral in continental crust
 – Only common mineral composed completely of Si and O
• Silicate minerals tend to cleave between the strong silicon-oxygen structures
Silicate Minerals

• Most silicate minerals crystallize from molten rock as it cools
 – Environment and chemical composition determines which minerals are produced
• Some silicate minerals form at Earth’s surface as other silicates are weathered
• Some silicate minerals form at extreme pressures during mountain building
Silicate Minerals

• How do the minerals present in a rock tell a story about how that rock formed?
Silicate Minerals

• Common **light silicate minerals** include:
 – Feldspars
 – Quartz
 – Muscovite
 – Clay minerals

• Contain varying amounts of aluminum, potassium, calcium, and sodium
Feldspars are the most abundant
- Found in igneous, sedimentary and metamorphic rocks
- Have two directions of cleavage at 90°
- 6 on Mohs hardness scale
- Potassium feldspar contains potassium ions
- Plagioclase feldspar contains calcium and/or sodium ions, and has striated cleavage surfaces
Silicate Minerals

- Quartz is common in igneous, sedimentary, and metamorphic rocks
 - Impurities cause a variety of colors
 - 7 on Mohs hardness scale
 - Forms hexagonal crystals with pyramid-shaped ends
Silicate Minerals

- Muscovite is a member of the mica family
 - Excellent cleavage in one direction
 - 2.5 on Mohs hardness scale
- Clay minerals are commonly the weathering product of other silicates
 - Common part of soil
 - Nearly half of the volume of sedimentary rocks is clay minerals
Silicate Minerals

Kaolinite

Knife blade

Weak bonds

Strong bonds
Silicate Minerals

• **Dark silicate minerals** contain iron and magnesium
 – Pyroxenes
 – Amphiboles
 – Olivine
 – Biotite
 – Garnet

• Dark color and high specific gravity from iron content
Silicate Minerals

- **Olivine** is a major constituent of dark igneous rocks
 - Abundant in Earth’s upper mantle
 - Black to olive green color, glassy luster, and granular

- **Pyroxenes** are an important component of dark-colored igneous rocks
 - Augite is black and, opaque and has two directions of cleavage at nearly 90º

- **The amphibole group** includes minerals that commonly make up the dark portion of light-colored rocks
 - Hornblende is a dark black mineral with two cleavage planes at 60º and 120º
Silicate Minerals

Olivine-rich peridotite (variety dunite)
Silicate Minerals

• Biotite is a dark, iron-rich member of the mica family
 – Excellent cleavage in one direction
 – Common in light-colored rocks

• Garnet is a dark silicate
 – Glassy luster, no cleavage, conchoidal fracture
 – Color varies, but commonly deep red
Nonsilicate minerals are divided into groups based on the negatively charged ion common to the group.

Nonsilicates make up only about 8% of Earth’s crust.

- Some occur in significant amounts in sedimentary rocks.
- Some are economically important.
Nonsilicate Minerals

A. Calcite
B. Dolomite
C. Halite
D. Gypsum
E. Hematite
F. Magnetite
G. Galena
H. Chalcopyrite
I. Fluorite
Nonsilicate Minerals

- Carbonates contain a carbonate ion
 - CO_3^{2-}
 - Calcite and dolomite
 - Used as road aggregate, building stone, and cement
- Halite and gypsum are common evaporites
 - Halite (a *halide*) is table salt
 - Gypsum (a *sulfate*) is used in plaster
- Oxides are important iron ores
Nonsilicate Minerals

• Other economically important nonsilicate minerals include:
 – Sulfides (galena, sphalerite)
 – Native elements (gold, silver, copper)
 – Fluorite
 – Corundum (ruby, sapphire)
 – Uraninite
Focus Question 1.5

• What are the different mineral groups?
 – Silicates (the most common) are based on the silicon-oxygen tetrahedron
 • Subdivided into light and dark groups
 – Nonsilicates include negatively charged ions
 • Common in sedimentary rocks
 • Many are economically important
Why does Earth’s crust contain a diverse array of minerals?