Learning Objectives

Upon completion of this unit, students should be able to:

1. Discuss how explicit knowledge is very definable and objective, whereas tacit knowledge is much more subjective and contextual. This makes explicit knowledge easier to capture and share but less valuable.

2. Examine how storytelling offers the ability to illustrate extremely complicated concepts in a brief, memorable, and easily repeated way.

3. Demonstrate that stories are usually more convincing, contextual, and compelling than other forms of communication such as debate and discussion.

4. Discuss why well-crafted stories have their own momentum that makes them self-propagating.

5. Examine that complex systems are not linear in nature; they are circular.

6. Analyze symptomatic solutions. They typically fail to address fundamental difficulties and result in cycles of reoccurring interventions.

7. Discuss the way that delays tend to increase the amount of oscillation in a system.

8. Examine how closed systems will fail over time as entropy inevitably builds up.

9. Discuss how buffers increase the ability of a system to adapt to changes in flow.

Unit Summary

One way to help a company retain its vibrancy, even if its essential business appears to be mundane and repetitive, is to look for the drama in the everyday actions of people and celebrate it through the sharing of stories. In small ways, each of us can frame our work in heroic terms. Just as a good author can find a story where others see only the commonplace deeds of ordinary people, leaders of companies can help their employees live the heroic journey by providing challenges that draw upon their will to succeed in the face of difficulty (R. Stone).

The first part of this unit takes us further into data's journey toward knowledge by examining tacit knowledge more closely. Storytelling as a technique for knowledge transfer is introduced. Key advantages and common uses for storytelling are listed, followed by actual business cases from the manufacturing and technology sectors. There is also a template for creating business anecdotes and fables that build your KM culture and an introduction to archetypes that you will find useful.

The second part of the unit discusses systems thinking. It begins with a brief history of the evolution of systems thinking. The work of Peter Senge is discussed at length.

Reading Assignment

Chapter 6: Storytelling and Knowledge Transfer
Chapter 7: Systems Thinking

Key Terms

1. Accentuate
2. Archetype
3. Business anecdotes
4. Business fables
5. Causal loop diagram
6. Circular analysis
7. Closed systems
8. Encapsulation
9. Explicit knowledge
10. Flows
11. Leverage
12. Narrative thinking
13. Open systems
14. Oscillation
15. Stocks
16. Symptomatic
17. Synergy
18. Tacit knowledge
19. The hero's journey
Basically, systems thinking provides a view of the world from a broader, less linear perspective that includes structures, patterns, events, and feedback rather than just the events themselves. A key tool is systems thinking, called the Casual Loop Diagram, is described and illustrated in detail. Systems thinking concepts such as feedback, delays, oscillation, "stock and flow" issues, closed systems, and leverage are introduced and illustrated with a case study from the restaurant industry. The "plumbing" of any system (its stocks and flows) has an enormous effect on how the system operates. Knowledge and learning represent good examples for understanding stocks and flows. Stock and flow problems often result in oscillation within a system. When a system fluctuates between state of surplus and deficit (oscillation), the effects can be incredibly destructive. One possible leverage point for minimizing the negative impact of stock and flow fluctuation is through the use of buffers.

Mankind has succeeded over time in conquering the physical world largely by adopting the analytic method described earlier in the text. To understand problems, we break a problem into components, study each part in isolation, and then draw conclusions about the whole. This is a powerful technique for problem solving. Unfortunately, this sort of linear analysis is rarely effective in addressing large, complex organizational problems because complex systems are not linear in nature--they are circular.